Impact of volatile organic compounds on chromium containing atmospheric particulate: insights from molecular dynamics simulations

Author:

Shah Dhawal,Karibayev Mirat,Adotey Enoch Kwasi,Amouei Torkmahalleh Mehdi

Abstract

AbstractThe effect of volatile organic compounds (VOCs) on chromium-containing atmospheric particles remains obscured because of difficulties in experimental measurements. Moreover, several ambiguities exist in the literature related to accurate measurements of atmospheric chromium concentration to evaluate its toxicity. We investigated the interaction energies and diffusivity for several VOCs in chromium (III)-containing atmospheric particles using classical molecular dynamics simulations. We analyzed xylene, toluene, ascorbic acid, carbon tetrachloride, styrene, methyl ethyl ketone, naphthalene, and anthracene in Cr(III) solutions, with and without air, to compare their effects on solution chemistry. The interaction energy between Cr(III) and water changed from 48 to 180% for different VOCs, with the highest change with anthracene and the lowest change with naphthalene. The results revealed no direct interactions between Cr(III) particles and the analyzed volatile organic compounds, except ascorbic acid. Interactions of Cr(III) and ascorbic acid differ significantly between the solution phase and the particulate phase. The diffusion of Cr(III) and all the VOCs also were observed in a similar order of magnitude (~ 10−5 cm2/s). The results can further assist in exploring the variation in chromium chemistry and reaction rates in the atmospheric particles in the presence of VOCs.

Funder

Nazarbayev University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3