Insight into Perovskite Solar Cell Formation for Various Organohalides Perovskite Precursors in the Presence of Water at the Molecular Level

Author:

Zhantuarov Sultan1ORCID,Kemelbekova Ainagul1ORCID,Shongalova Aigul1ORCID,Aimaganbetov Kazybek1ORCID,Sailau Zhassulan2ORCID,Aldongarov Anuar3ORCID,Serikkanov Abay1ORCID,Chuchvaga Nikolay1ORCID,Almas Nurlan4ORCID

Affiliation:

1. Institute of Physics and Technology, Satbayev University, Almaty 050032, Kazakhstan

2. Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty 050000, Kazakhstan

3. Department of Technical Physics, L. N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan

4. International Science Complex Astana, Institute for Hydrogen Energy, Astana 010000, Kazakhstan

Abstract

Recently, hybrid (organic–inorganic) metal halide perovskites have gained significant attention due to their excellent performance in optoelectronics and photovoltaics (PV). Single-junction PV cells made from these materials have achieved record efficiencies of over 25%, with the potential for further improvement in the future. The crystal structure of organohalide perovskite semiconductors plays a crucial role in the success of perovskites. In this study, we used classical all-atom molecular dynamics simulations to investigate the dynamics of ionic precursors as they form organic halide perovskite units in the presence of water as a solvent. During the analysis of radial distribution functions, interaction energies, hydrogen bonding, and diffusion coefficients, it was confirmed that organic precursors aggregate in the absence of water and disperse in the presence of water. The interaction energies also showed that the organic precursors of the perovskite have weaker interactions with Pb than the other components of the perovskite. The hydrogen bonding analysis revealed that the number of hydrogen bonds between the organic precursors and Cl decreases in the presence of water, but hydrogen bonds form between the organic precursors/water and Cl/water. Additionally, the diffusion coefficients of the organic precursors were found to be in the following increasing order: 2,2-(ethylenedioxy) bis ethylammonium (EDBE2+) < guanidium (GA+) < phenethylammonium (PEA+) < iso-butylammonium (Iso-BA+).

Funder

Ministry of Education and Science of the Republic of Kazakhstan

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3