3D porosity structure of the earliest solar system material

Author:

Hanna Romy D.ORCID,Ketcham Richard A.ORCID,Edey David R.ORCID,O’Connell Josh

Abstract

AbstractCarbonaceous chondrites (CCs) contain the earliest preserved Solar System material, and objects containing this material are targets of numerous sample return missions. Both laboratory and remote sensing data have shown that this material can be highly porous, but the origin and nature of this porosity is currently not well understood. Because the majority of porosity within CCs is submicron to micron in size, previous lab efforts have been restricted by the limited observational scale required to examine this porosity with currently available techniques. Here we present results from a newly developed technique that allows submicron porosity to be examined in 3D within a 12 mm3 volume of CM Murchison. We use X-ray computed tomography combined with the highly attenuating noble gas xenon to characterize porosity well below the spatial resolution of the data (3.01 µm/voxel). This method not only allows examination of submicron porosity within a significantly larger volume than previously possible but also reveals the full three-dimensional porosity structure and pore connectivity. Our data reveal that some fine-grained rims (FGRs) surrounding chondrules have a complex 3D porosity structure, suggesting formation of the FGRs via dust aggregates or variable secondary processing around the rim after accretion.

Funder

National Aeronautics and Space Administration

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3