Multi-objective optimization can balance trade-offs among boreal caribou, biodiversity, and climate change objectives when conservation hotspots do not overlap

Author:

Martin Amanda E.,Neave Erin,Kirby Patrick,Drever C. Ronnie,Johnson Cheryl A.

Abstract

AbstractThe biodiversity and climate change crises have led countries—including Canada—to commit to protect more land and inland waters and to stabilize greenhouse gas concentrations. Canada is also obligated to recover populations of at-risk species, including boreal caribou. Canada has the opportunity to expand its protected areas network to protect hotspots of high value for biodiversity and climate mitigation. However, co-occurrence of hotspots is rare. Here we ask: is it possible to expand the network to simultaneously protect areas important for boreal caribou, other species at risk, climate refugia, and carbon stores? We used linear programming to prioritize areas for protection based on these conservation objectives, and assessed how prioritization for multiple, competing objectives affected the outcome for each individual objective. Our multi-objective approach produced reasonably strong representation of value across objectives. Although trade-offs were required, the multi-objective outcome was almost always better than when we ignored one objective to maximize value for another, highlighting the risk of assuming that a plan based on one objective will also result in strong outcomes for others. Multi-objective optimization approaches could be used to plan for protected areas networks that address biodiversity and climate change objectives, even when hotspots do not co-occur.

Funder

Environment and Climate Change Canada

Nature United

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Reference65 articles.

1. IPCC. Summary for policymakers in Climate Change 2021: The Physical Science Basis. Contribution of Working Group 1 to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (eds. Masson-Delmotte, V. et al.) 3–32 (Cambridge University Press, 2021).

2. Ceballos, G. et al. Accelerated modern human-induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).

3. Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived?. Nature 471, 51–57 (2011).

4. IPBES. Global assessment report of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES Secretariat, 2019).

5. United Nations. What is the United Nations Framework Convention on Climate Change? https://unfccc.int/process-and-meetings/the-convention/what-is-the-united-nations-framework-convention-on-climate-change (2021).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3