Protecting boreal caribou habitat can help conserve biodiversity and safeguard large quantities of soil carbon in Canada

Author:

Johnson Cheryl A.,Drever C. Ronnie,Kirby Patrick,Neave Erin,Martin Amanda E.

Abstract

AbstractBoreal caribou require large areas of undisturbed habitat for persistence. They are listed as threatened with the risk of extinction in Canada because of landscape changes induced by human activities and resource extraction. Here we ask: Can the protection of habitat for boreal caribou help Canada meet its commitments under the United Nations Convention on Biological Diversity and United Nations Framework Convention on Climate Change? We identified hotspots of high conservation value within the distribution of boreal caribou based on: (1) three measures of biodiversity for at risk species (species richness, unique species and taxonomic diversity); (2) climate refugia or areas forecasted to remain unchanged under climate change; and, (3) areas of high soil carbon that could add to Canada’s greenhouse gas emissions if released into the atmosphere. We evaluated the overlap among hotspot types and how well hotspots were represented in Canada’s protected and conserved areas network. While hotspots are widely distributed across the boreal caribou distribution, with nearly 80% of the area falling within at least one hotspot type, only 3% of the distribution overlaps three or more hotspots. Moreover, the protected and conserved areas network only captures about 10% of all hotspots within the boreal caribou distribution. While the protected and conserved areas network adequately represents hotspots with high numbers of at risk species, areas occupied by unique species, as well as the full spectrum of areas occupied by different taxa, are underrepresented. Climate refugia and soil carbon hotspots also occur at lower percentages than expected. These findings illustrate the potential co-benefits of habitat protection for caribou to biodiversity and ecosystem services and suggest caribou may be a good proxy for future protected areas planning and for developing effective conservation strategies in regional assessments.

Funder

Environment and Climate Change Canada

Nature United

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3