Production of oyster mushroom (Pleurotus ostreatus) from some waste lignocellulosic materials and FTIR characterization of structural changes

Author:

Akcay Caglar,Ceylan Faik,Arslan Recai

Abstract

AbstractIn this study, oyster (Pleurotus ostreatus) mushroom was cultivated from hazelnut branches (HB) (Corylus avellana L.), hazelnut husk (HH), wheat straw (WS), rice husk (RH) and spent coffee grounds (CG). Hazelnut branch waste was used for the first time in oyster mushroom cultivation. In the study, mushrooms were grown by preparing composts from 100 to 50% mixtures of each waste type. Yield, biological activity, spawn run time, total harvesting time and mushroom quality characteristics were determined from harvested mushroom caps. In addition, chemical analysis of lignocellulosic materials (extractive contents, holocellulose, α-cellulose, lignin and ash contents) were carried out as a result of mushroom production and their changes according to their initial amounts were examined. In addition, the changes in the structure of waste lignocellulosic materials were characterized by FTIR analysis. As a result of the study, 172 g/kg yield was found in wheat straw used as a control sample, while it was found as 255 g/kg in hazelnut branch pruning waste. The highest spawn run time (45 days) was determined in the compost prepared from the mixture of hazelnut husk and spent coffee ground wastes. This study showed that HB wastes can be used for the cultivation of oyster mushroom (P. ostreatus). After mushroom cultivation processes, holocelulose and α-cellulose content rates decreased while ash contents increased. FTIR spectroscopy indicated that significant changes occurred in the wavelengths regarding cellulose, hemicellulose and lignin components. Most significant changes occurred in 1735, 1625, 1510, 1322 and 1230 wavelengths.

Funder

Directorate of Scientific Research Projects of Düzce University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3