Iron nanoparticle regulate succinate dehydrogenase activity in canola plants under drought stress

Author:

Rezayian Maryam,Niknam Vahid,Arabloo Maryam

Abstract

AbstractApplication of nutrients as nanoparticle (NP) is an operative manner of nutrient supply for plants, especially under stress conditions. The present study was designed to highlight the role of iron NP on drought tolerance and elucidate the underlying mechanisms in drought-stressed canola plants. Drought stress was imposed by polyethylene glycol different concentrations (0, 10 and 15% (W/V)) with or without iron NP (1.5 and 3 mg/l). A comparative study of several physiological and biochemical parameters have been carried out in canola plants treated by drought and iron NP. Stressed-canola plants showed a reduction in growth parameters, whereas iron NP mostly stimulated growth of stressed plants, which was accompanied by reinforcement in defense mechanisms. Regarding impacts on compatible osmolytes, the data revealed that iron NP was able to regulate osmotic potential by increasing protein, proline and soluble sugar contents. The iron NP application was activated the enzymatic defense system (catalase and polyphenol oxidase) and promoted the non-enzymatic antioxidants (phenol, flavonol and flavonoid). Both of these adaptive responses declined free radicals as well as lipid peroxidation and enhanced the membrane stability and drought tolerance of the plants. Enhanced chlorophyll accumulation via induction of protoporphyrin, magnesium protoporphyrin and protochlorophyllide, by iron NP also contributed towards better stress tolerance. Enzymes of Krebs cycle, namely succinate dehydrogenase and aconitase, were induced by iron NP in canola plants grown under drought stress. These results propose a multifaceted involvement of iron NP, through regulation of activity of respiratory enzymes and antioxidant enzymes, production of reactive oxygen species, osmoregulation and secondary metabolites metabolism, in response to drought stress.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3