Leaf Photosynthesis and Drought Adaptation in Field-Grown Oilseed Rape (Brassica napus L.)

Author:

Jensen CR,Mogensen VO,Mortensen G,Andersen MN,Schjoerring JK,Thage JH,Koribidis J

Abstract

Photosynthesis and drought adaptation in leaves of field grown rape (Brassica napus L. cv. Global) were investigated in 1992 under temperate climatic conditions in plants grown in lysimeters in a sand and in a loam soil. Light-saturated net photosynthesis (Amax), leaf conductance to water vapour (ge), leaf water potential (Ψe), leaf osmotic potential at full turgor (Ψπ100), specific leaf area (SLA), spectral reflection index (RI) used as a measure of leaf area, and leaf nitrogen content, were determined in irrigated plants and in plants exposed to soil drying. In the early growth stages before flowering, Amax was 35-45 μmol m-2 s-1 and ge was 1-1.5 mol m-2 s-1. Maximum rates of CO2 assimilation greater than 30 μmol m-2 s-1 were obseved for up to 19 days. Stomata partly closed in ageing leaves maintaining a constant CI/Ca ratio. Both photosynthetic nitrogen use efficiency (NUE; Amax per unit of nitrogen) and photosynthetic water use efficiency (WUE; Amax/ge) were high compared with efficiencies of stems and husks and of other C3 plants. In bracts Amax and ge were 10-15 μmol m-2 s-1 and 0.2-0.7 mol mol m-2 s-1, respectively. Both Amax and ge varied linearly with leaf nitrogen content. When soil water was depleted, both Ψπ100 and RI decreased relative to controls on both soil types before any significant decrease in Ψπ occurred. On loam with slow soil drying SLA, ge and Amax decreased before any significant decrease in Ψe occurred. We suggest that these responses might have been triggered by a non-hydraulic signal transmitted from the roots. When water was more depleted, rape maintained positive turgor down to Ψe of -1.6 MPa. Rape had a high TW/DW ratio (9-11) and a 6 limited ability to adjust osmotically, ΔΨe100 being at most 0.3-0.4 MPa.

Publisher

CSIRO Publishing

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3