Electronic phase shift measurement for the determination of acoustic wave DOA using single MEMS biomimetic sensor

Author:

Rabelo Renato C.,Alves Fabio D.,Karunasiri Gamani

Abstract

AbstractMEMS acoustic sensors have been developed to mimic the highly-accurate sound-locating system of the Ormia ochracea fly, which detects sound wavelengths much larger than its hearing organ. A typical ormia-based MEMS directional sound sensor possesses two coupled wings that vibrate in response to sound according to a superposition of its two main resonant modes, rocking and bending. Vibrations are transduced into electronic signals by interdigitated comb finger capacitors at each wing’s end along with a capacitance measuring circuitry. A sensor designed to exhibit resonant modes closely placed in frequency, enhancing their coupling, was operated with a closed cavity behind the wings. Simultaneous and independent measurements of electronic signals generated at each of the single sensor wings were used to determine incident sound direction of arrival (DOA). DOA was found proportional to the phase shift between them and to the difference over the sum of their amplitudes as well. Single sensor phase shift DOA measurement presented a resolution better than 3° for sound pressure levels of 25 mPa or greater. These results indicate that a single sensor operating in closed-cavity configuration can provide hemispherical unambiguous direction of arrival of sound waves which wavelength is much larger than the sensor size.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3