Deep learning-based breast cancer grading and survival analysis on whole-slide histopathology images

Author:

Wetstein Suzanne C.,de Jong Vincent M. T.,Stathonikos Nikolas,Opdam Mark,Dackus Gwen M. H. E.,Pluim Josien P. W.,van Diest Paul J.,Veta Mitko

Abstract

AbstractBreast cancer tumor grade is strongly associated with patient survival. In current clinical practice, pathologists assign tumor grade after visual analysis of tissue specimens. However, different studies show significant inter-observer variation in breast cancer grading. Computer-based breast cancer grading methods have been proposed but only work on specifically selected tissue areas and/or require labor-intensive annotations to be applied to new datasets. In this study, we trained and evaluated a deep learning-based breast cancer grading model that works on whole-slide histopathology images. The model was developed using whole-slide images from 706 young (< 40 years) invasive breast cancer patients with corresponding tumor grade (low/intermediate vs. high), and its constituents nuclear grade, tubule formation and mitotic rate. The performance of the model was evaluated using Cohen’s kappa on an independent test set of 686 patients using annotations by expert pathologists as ground truth. The predicted low/intermediate (n = 327) and high (n = 359) grade groups were used to perform survival analysis. The deep learning system distinguished low/intermediate versus high tumor grade with a Cohen’s Kappa of 0.59 (80% accuracy) compared to expert pathologists. In subsequent survival analysis the two groups predicted by the system were found to have a significantly different overall survival (OS) and disease/recurrence-free survival (DRFS/RFS) (p < 0.05). Univariate Cox hazard regression analysis showed statistically significant hazard ratios (p < 0.05). After adjusting for clinicopathologic features and stratifying for molecular subtype the hazard ratios showed a trend but lost statistical significance for all endpoints. In conclusion, we developed a deep learning-based model for automated grading of breast cancer on whole-slide images. The model distinguishes between low/intermediate and high grade tumors and finds a trend in the survival of the two predicted groups.

Funder

The Dutch Research Council

Philips Research

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3