Spatiotemporal-based automated inundation mapping of Ramsar wetlands using Google Earth Engine

Author:

Goyal Manish Kumar,Rakkasagi Shivukumar,Shaga Soumya,Zhang Tian C.,Surampalli Rao Y.,Dubey Saket

Abstract

AbstractWetlands are one of the most critical components of an ecosystem, supporting many ecological niches and a rich diversity of flora and fauna. The ecological significance of these sites makes it imperative to study the changes in their inundation extent and propose necessary measures for their conservation. This study analyzes all 64 Ramsar sites in China based on their inundation patterns using Landsat imagery from 1991 to 2020. Annual composites were generated using the short-wave infrared thresholding technique from June to September to create inundation maps. The analysis was carried out on each Ramsar site individually to account for its typical behavior due to regional geographical and climatic conditions. The results of the inundation analysis for each site were subjected to the Mann–Kendall test to determine their trends. The analysis showed that 8 sites exhibited a significantly decreasing trend, while 14 sites displayed a significantly increasing trend. The accuracy of the analysis ranged from a minimum of 72.0% for Hubei Wang Lake to a maximum of 98.0% for Zhangye Heihe Wetland National Nature Reserve. The average overall accuracy of the sites was found to be 90.0%. The findings emphasize the necessity for conservation strategies and policies for Ramsar sites.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3