Author:
Bosek Maciej,Ziomkowska Blanka,Pyskir Jerzy,Wybranowski Tomasz,Pyskir Małgorzata,Cyrankiewicz Michał,Napiórkowska Marta,Durmowicz Maciej,Kruszewski Stefan
Abstract
AbstractThe aim of this study was to investigate the aggregation of red blood cells (RBCs) suspended in dextran solution at various levels of molecular mass. Dextran solutions at molecular mass 40, 70, 100 and 500 kDa at concentration from 2 to 5 g/dL were used to suspend the RBCs. The radius and velocity of sedimenting RBC aggregates were investigated using image analysis. The radius and sedimentation velocity of aggregates increased initially, then decreased after achieving maxima. The maximal velocity of RBC aggregates showed a bell-shaped dependence on dextran molecular mass and concentration, whereas maximal radius showed monotonic increase with both factors. Difference between aggregate and solution density was estimated using aggregate radius and sedimentation velocity and dextran solution viscosity, and was consistent across most molecular mass and concentration levels. This allowed to calculate the porosity of aggregates and to show that it monotonically decreased with the increase in the solution density, caused by the increase in the dextran concentration. The results provide insight into the RBC aggregation process in solutions of proteins of different size, reflecting various pathological conditions. The currently reported data can be potentially applied to specific pathophysiological conditions giving an interpretation that is not yet fully discussed in the literature.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献