Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings

Author:

Khan Adil,Kamran Muhammad,Imran Muhammad,Al-Harrasi Ahmed,Al-Rawahi Ahmed,Al-Amri Issa,Lee In-Jung,Khan Abdul Latif

Abstract

AbstractAlkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K+ and lowered Na+ concentrations in shoot and root under stress. Moreover, Si and SA treatments modulated endogenous SA levels and dramatically decreased abscisic acid levels in both shoot and root. Additionally, key genes involved in Si uptake, SA biosynthesis, the antioxidant defence system and rhizosphere acidification were up-regulated in Si and SA treatments under alkaline conditions. These results demonstrate that Si and SA play critical roles in improving alkaline stress tolerance in tomato seedlings, by modifying the endogenous Na+ and K+ contents, regulating oxidative damage and key genes and modulating endogenous hormone levels. These findings will help to broaden our understanding regarding the physiological and molecular mechanisms associated with the alkaline soil tolerance in plants.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3