Author:
Mohammadi Shirin,Rydgren Knut,Bakkestuen Vegar,Gillespie Mark A. K.
Abstract
AbstractGlobally, climate change greatly impacts the production of major crops, and there have been many attempts to model future yields under warming scenarios in recent years. However, projections of future yields may not be generalisable to all crop growing regions, particularly those with diverse topography and bioclimates. In this study, we demonstrate this by evaluating the links between changes in temperature and precipitation and changes in wheat, barley, and potato yields at the county-level during 1980–2019 in Norway, a Nordic country with a range of climates across a relatively small spatial scale. The results show that the impacts of climate variables on yield vary widely by county, and that for some crops, the strength and direction of the link depends on underlying local bioclimate. In addition, our analysis demonstrates the need for some counties to focus on weather changes during specific crucial months corresponding with certain crop growth stages. Furthermore, due to the local climatic conditions and varying projected climate changes, different production opportunities are likely to occur in each county.
Publisher
Springer Science and Business Media LLC
Reference84 articles.
1. Rahaman, A. et al. The increasing hunger concern and current need in the development of sustainable food security in the developing countries. Trends Food Sci. Technol. 113, 423–429. https://doi.org/10.1016/j.tifs.2021.04.048 (2021).
2. Porter, J. R. et al. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change 485–533 (Cambridge University Press, 2014).
3. Yan, H. et al. Crop traits enabling yield gains under more frequent extreme climatic events. Sci. Total Environ. 808, 152170. https://doi.org/10.1016/j.scitotenv.2021.152170 (2022).
4. Lobell, D. et al. The critical role of extreme heat for maize production in the United States. Nat. Clim. Change. 3, 497–501. https://doi.org/10.1038/nclimate1832 (2013).
5. Vermeulen, S. J. et al. Addressing uncertainty in adaptation planning for agriculture. Proc. Natl. Acad. Sci. 110, 8357–8362. https://doi.org/10.1073/pnas.1219441110 (2013).
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献