A method based on interpretable machine learning for recognizing the intensity of human engagement intention

Author:

Bi Jian,Hu Fang-chao,Wang Yu-jin,Luo Ming-nan,He Miao

Abstract

AbstractTo interact with humans more precisely and naturally, social robots need to “perceive” human engagement intention, especially need to recognize the main interaction person in multi-person interaction scenarios. By analyzing the intensity of human engagement intention (IHEI), social robots can distinguish the intention of different persons. Most existing research in this field mainly focus on analyzing whether a person has the intention to interact with the robot while lack of analysis of IHEI. In this regard, this paper proposes an approach for recognizing the engagement intention intensity. Four categories of visual features, including line of sight, head pose, distance and expression of human, are captured, and a CatBoost-based machine learning model is applied to train an optimal classifier for predicting the IHEI on the dataset. The experimental results show that this classifier can effectively predict the IHEI that can be applied into real human–robot interaction scenarios. Moreover, the proposed model is an interpretable machine learning model, where interpretability analysis on the trained classifier has been done to explore the deep associations between input features and engagement intention, thereby providing robust and effective robot social decision-making.

Funder

Graduate Innovation Project of Chongqing University of Technology

Postdoctoral Science Foundation Program of Chongqing Science and Technology Bureau

Youth Project of Science and Technology Research Program of Chongqing Education Commission of China

Cooperative Project between universities in Chongqing and affiliated institutes of Chinese Academy of Sciences

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Predicting the Intention to Interact with a Service Robot: the Role of Gaze Cues;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Towards Explainable Proactive Robot Interactions for Groups of People in Unstructured Environments;Companion of the 2024 ACM/IEEE International Conference on Human-Robot Interaction;2024-03-11

3. Self-supervised prediction of the intention to interact with a service robot;Robotics and Autonomous Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3