Finite element analysis of the mechanical behavior of 3D printed orthodontic attachments used in aligner treatment

Author:

Nagib Riham,Farkas Andrei Zoltan,Szuhanek Camelia

Abstract

AbstractThe composite attachment loss during orthodontic clear aligner therapy is an adverse event that commonly happens in clinical practice and can affect the overall outcome and length of treatment. The aim of our research is to provide a basis for the further study of an innovative digital protocol and application method for orthodontic aligner attachments. Two 3D models were designed, one based on the proposed protocol and the other on the conventional method for aligner attachment application. Four attachment shapes were used to identify the maximum values for the von Mises equivalent stresses, the maximum displacements values and the areas in which these values were recorded through FEM analysis. The results of the mechanical simulation show lower values of von Mises stress recorded in the 3D printed attachments assemblies, independent of their shape, when simulated under the same boundary and load conditions. The trapezoidal prism shaped 3D printed model has a 3.7 times smaller displacement value (0.088 [mm]) compared to the adhesive resin model (0.326 [mm]). In conclusion, the proposed protocol for aligner attachments and the introduction of innovative materials is a promising method of solving conventional attachment problems in current orthodontic treatments.

Funder

"Victor Babeş" University of Medicine and Pharmacy ,Timişoara

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3