Author:
Tang Qiqi,Liang Beibei,Zhang Lisha,Li Xuhui,Li Hengyu,Jing Wei,Jiang Yingjie,Zhou Felix,Zhang Jian,Meng Yanchun,Yang Xinhua,Yang Hao,Huang Gang,Zhao Jian
Abstract
AbstractNeutrophil extracellular traps (NETs) has been demonstrated to regulate the metastasis of breast cancer. In this study, we showed that de novo cholesterol biosynthesis induced by ASPP2 depletion in mouse breast cancer cell 4T1 and human breast cancer cell MDA-MB-231 promoted NETs formation in vitro, as well as in lung metastases in mice intravenously injected with ASPP2-deficient 4T1 cells. Simvastatin and berberine (BBR), cholesterol synthesis inhibitors, efficiently blocked ASPP2-depletion induced NETs formation. Cholesterol biosynthesis greatly enhanced Coiled-coil domain containing protein 25 (CCDC25) expression on cancer cells as well as in lung metastases. CCDC25 expression was co-localized with caveolin-1, a lipid raft molecule, and was damped by inhibitor of lipid rafts formation. Our data suggest that cholesterol biosynthesis promotes CCDC25 expression in a lipid raft-dependent manner. Clinically, the expression of CCDC25 was positively correlated with the expression of 3-hydroxy-3-methylglutaryl-CoAreductase (HMRCG), and citrullinated histone H3 (H3cit), in tissues from breast cancer patients. High expression of CCDC25 and HMGCR was related with worse prognosis in breast cancer patients. In conclusion, our study explores a novel mechanism for de novo cholesterol biosynthesis in the regulation of CCDC25 expression, NETs formation and breast cancer metastasis. Targeting cholesterol biosynthesis may be promising therapeutic strategies to treat breast cancer metastasis.
Funder
Natural Science Foundation of Shanghai
National Key Research and Development Program of China
National Natural Science Foundation of China
Shanghai Key Laboratory of Molecular Imaging
Publisher
Springer Science and Business Media LLC
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献