Author:
Barthe Gilles,Viti Roberta De,Druschel Peter,Garg Deepak,Gomez-Rodriguez Manuel,Ingo Pierfrancesco,Kremer Heiner,Lentz Matthew,Lorch Lars,Mehta Aastha,Schölkopf Bernhard
Abstract
AbstractThe ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and a societally sensitive trade-off between utility and privacy. In this work, we introduce a new privacy-preserving and inclusive system for epidemic risk assessment and notification that aims to address these limitations. Rather than capturing pairwise encounters between user devices as done by existing systems, our system captures encounters between user devices and beacons placed in strategic locations where infection clusters may originate. Epidemiological simulations using an agent-based model demonstrate that, by utilizing location and environmental information and interoperating with manual contact tracing, our system can increase the accuracy of contact tracing actions and may help reduce epidemic spread already at low adoption.
Funder
Max Planck Institute for Intelligent Systems
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献