Structurally-constrained optical-flow-guided adversarial generation of synthetic CT for MR-only radiotherapy treatment planning

Author:

Vajpayee Rajat,Agrawal Vismay,Krishnamurthi Ganapathy

Abstract

AbstractThe rapid progress in image-to-image translation methods using deep neural networks has led to advancements in the generation of synthetic CT (sCT) in MR-only radiotherapy workflow. Replacement of CT with MR reduces unnecessary radiation exposure, financial cost and enables more accurate delineation of organs at risk. Previous generative adversarial networks (GANs) have been oriented towards MR to sCT generation. In this work, we have implemented multiple augmented cycle consistent GANs. The augmentation involves structural information constraint (StructCGAN), optical flow consistency constraint (FlowCGAN) and the combination of both the conditions (SFCGAN). The networks were trained and tested on a publicly available Gold Atlas project dataset, consisting of T2-weighted MR and CT volumes of 19 subjects from 3 different sites. The network was tested on 8 volumes acquired from the third site with a different scanner to assess the generalizability of the network on multicenter data. The results indicate that all the networks are robust to scanner variations. The best model, SFCGAN achieved an average ME of 0.9   5.9 HU, an average MAE of 40.4   4.7 HU and 57.2   1.4 dB PSNR outperforming previous research works. Moreover, the optical flow constraint between consecutive frames preserves the consistency across all views compared to 2D image-to-image translation methods. SFCGAN exploits the features of both StructCGAN and FlowCGAN by delivering structurally robust and 3D consistent sCT images. The research work serves as a benchmark for further research in MR-only radiotherapy.

Funder

Department of Engineering Design, IIT Madras

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3