Synthetic CT generation for pelvic cases based on deep learning in multi-center datasets

Author:

Li Xianan,Jia Lecheng,Lin Fengyu,Chai Fan,Liu Tao,Zhang Wei,Wei Ziquan,Xiong Weiqi,Li Hua,Zhang Min,Wang Yi

Abstract

Abstract Background and purpose To investigate the feasibility of synthesizing computed tomography (CT) images from magnetic resonance (MR) images in multi-center datasets using generative adversarial networks (GANs) for rectal cancer MR-only radiotherapy. Materials and methods Conventional T2-weighted MR and CT images were acquired from 90 rectal cancer patients at Peking University People’s Hospital and 19 patients in public datasets. This study proposed a new model combining contrastive learning loss and consistency regularization loss to enhance the generalization of model for multi-center pelvic MRI-to-CT synthesis. The CT-to-sCT image similarity was evaluated by computing the mean absolute error (MAE), peak signal-to-noise ratio (SNRpeak), structural similarity index (SSIM) and Generalization Performance (GP). The dosimetric accuracy of synthetic CT was verified against CT-based dose distributions for the photon plan. Relative dose differences in the planning target volume and organs at risk were computed. Results Our model presented excellent generalization with a GP of 0.911 on unseen datasets and outperformed the plain CycleGAN, where MAE decreased from 47.129 to 42.344, SNRpeak improved from 25.167 to 26.979, SSIM increased from 0.978 to 0.992. The dosimetric analysis demonstrated that most of the relative differences in dose and volume histogram (DVH) indicators between synthetic CT and real CT were less than 1%. Conclusion The proposed model can generate accurate synthetic CT in multi-center datasets from T2w-MR images. Most dosimetric differences were within clinically acceptable criteria for photon radiotherapy, demonstrating the feasibility of an MRI-only workflow for patients with rectal cancer.

Funder

Ministry of Industry and Information Technology of the People’s Republic of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3