Evolution of surface area and membrane shear modulus of matured human red blood cells during mechanical fatigue

Author:

Wei Qiaodong,Wang Xiaolong,Zhang Ce,Dao Ming,Gong Xiaobo

Abstract

AbstractMechanical properties of red blood cells (RBCs) change during their senescence which supports numerous physiological or pathological processes in circulatory systems by providing crucial cellular mechanical environments of hemodynamics. However, quantitative studies on the aging and variations of RBC properties are largely lacking. Herein, we investigate morphological changes, softening or stiffening of single RBCs during aging using an in vitro mechanical fatigue model. Using a microfluidic system with microtubes, RBCs are repeatedly subjected to stretch and relaxation as they squeeze into and out of a sudden contraction region. Geometric parameters and mechanical properties of healthy human RBCs are characterized systematically upon each mechanical loading cycle. Our experimental results identify three typical shape transformations of RBCs during mechanical fatigue, which are all strongly associated with the loss of surface area. We constructed mathematical models for the evolution of surface area and membrane shear modulus of single RBCs during mechanical fatigue, and quantitatively developed an ensemble parameter to evaluate the aging status of RBCs. This study provides not only a novel in vitro fatigue model for investigating the mechanical behavior of RBCs, but also an index closely related to the age and inherent physical properties for a quantitative differentiation of individual RBCs.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3