Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age

Author:

Waugh RE1,Narla M1,Jackson CW1,Mueller TJ1,Suzuki T1,Dale GL1

Affiliation:

1. Department of Biophysics, University of Rochester, School of Medicine and Dentistry, NY 14642.

Abstract

Abstract The rheologic properties of senescent erythrocytes have been examined using two models of red blood cell (RBC) aging. In the rabbit, aged erythrocytes were isolated after biotinylation, in vivo aging, and subsequent recovery on an avidin support. Aged RBCs from the mouse were obtained using the Ganzoni hypertransfusion model that suppresses erythropoiesis for prolonged periods of time allowing preexisting cells to age in vivo. In both cases, the aged erythrocytes were found by ektacytometry to have decreased deformability due to diminished surface area and cellular dehydration. The aged rabbit erythrocytes were further characterized by micropipette methods that documented an average surface area decrease of 10.5% and a volume decrease of 8.4% for the cells that were 50 days old. Because both the surface area and volume decreased with cell age, there was little change in surface-to- volume ratio (sphericity) during aging. The aged cells were found to have normal membrane elasticity. In addition, human RBCs were fractionated over Stractan density gradients and the most dense cells were found to have rheologic properties similar to those reported for the aged RBCs from rabbits and mice, although the absolute magnitude of the changes in surface area and volume were considerably greater for the human cells. Thus, stringent density fractionation protocols that result in isolation of the most dense 1% of cells can produce a population of human cells with rheologic properties similar to senescent cells obtained in other species. The data indicate that progressive loss of cell area and cell dehydration are characteristic features of cell aging.

Publisher

American Society of Hematology

Subject

Cell Biology,Hematology,Immunology,Biochemistry

Cited by 193 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3