Author:
Pedersen Nanna Bjerregaard,Matthiesen Henning,Blanchette Robert A.,Alfredsen Gry,Held Benjamin W.,Westergaard-Nielsen Andreas,Hollesen Jørgen
Abstract
AbstractClimate change is expected to accelerate the microbial degradation of the many extraordinary well-preserved organic archaeological deposits found in the Arctic. This could potentially lead to a major loss of wooden artefacts that are still buried within the region. Here, we carry out the first large-scale investigation of wood degradation within archaeological deposits in the Arctic. This is done based on wooden samples from 11 archaeological sites that are located along a climatic gradient in Western Greenland. Our results show that Ascomycota fungi are causing extensive soft rot decay at all sites regardless of climate and local environment, but the group is diverse and many of the species were only found once. Cadophora species known to cause soft rot in polar environments were the most abundant Ascomycota found and their occurrence in native wood samples underlines that they are present locally. Basidiomycota fungi were also present at all sites. In the majority of samples, however, these aggressive and potentially very damaging wood degraders have caused limited decay so far, probably due to unfavorable growth conditions. The presence of these wood degrading fungi suggests that archaeological wooden artefacts may become further endangered if climate change leads to more favorable growth conditions.
Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Hellmann, L. et al. Tracing the origin of Arctic driftwood. J. Geophys. Res. Biogeosci. 118, 68–76. https://doi.org/10.1002/jgrg.20022 (2013).
2. Hollesen, J. et al. Climate change and the preservation of archaeological sites in Greenland. In Public Archaeology and Climate Change (eds Dawson, T. et al.) 90–99 (Oxbow Books, London, 2017).
3. Grønnow, B. The Frozen Saqqaq Sites of Disko Bay, West Greenland, Qeqertasussuk and Qajaa (2400–900 BC), Studies of Saqqaq Material Culture in an Eastern Arctic Perspective (Museum Tusculanum, Copenhagen, 2017).
4. ICPP. Summary for Policymakers. Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge, UK and New York, NY, USA, 2013).
5. Kaufman, D. S. et al. Recent warming reverses long-term arctic cooling. Science 325, 1236–1239. https://doi.org/10.1126/science.1173983 (2009).
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献