Author:
Okajima Satoru,Nakamura Hisashi,Kaspi Yohai
Abstract
AbstractMigratory cyclones and anticyclones account for most of the day-to-day weather variability in the extratropics. These transient eddies act to maintain the midlatitude jet streams by systematically transporting westerly momentum and heat. Yet, little is known about the separate contributions of cyclones and anticyclones to their interaction with the westerlies. Here, using a novel methodology for identifying cyclonic and anticyclonic vortices based on curvature, we quantify their separate contributions to atmospheric energetics and their feedback on the westerly jet streams as represented in Eulerian statistics. We show that climatological westerly acceleration by cyclonic vortices acts to dominantly reinforce the wintertime eddy-driven near-surface westerlies and associated cyclonic shear. Though less baroclinic and energetic, anticyclones still play an important role in transporting westerly momentum toward midlatitudes from the upper-tropospheric thermally driven jet core and carrying eddy energy downstream. These new findings have uncovered essential characteristics of atmospheric energetics, storm track dynamics and eddy-mean flow interaction.
Publisher
Springer Science and Business Media LLC
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献