Quantifying the Relevance of Cyclones for Precipitation Extremes

Author:

Pfahl Stephan1,Wernli Heini1

Affiliation:

1. Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland

Abstract

Abstract Owing to the huge potential impact of precipitation extremes on society, it is important to better understand the mechanisms causing these events, and their variations with respect to a changing climate. In this study, the importance of a particular category of weather systems, namely cyclones, for the occurrence of regional-scale precipitation extremes is quantified globally using the ECMWF Interim reanalysis (ERA-Interim) dataset. Such an event-based climatological approach complements previous case studies, which established the physical relationship between cyclones and heavy precipitation. A high percentage of precipitation extremes is found to be directly related to cyclones. Regional hot spots are identified where this percentage of cyclone-induced precipitation extremes exceeds 80% (e.g., in the Mediterranean region, Newfoundland, near Japan, and over the South China Sea). The results suggest that in these regions changes of heavy precipitation with global warming are specifically sensitive to variations in the dynamical forcing, for example, related to shifts of the storm tracks. Furthermore, properties of cyclones causing extreme precipitation are investigated. In the exit regions of the Northern Hemisphere storm tracks, these cyclones are on average slightly more intense than low pressure systems not associated with precipitation extremes, but no differences with respect to minimum core pressure are found in most other parts of the midlatitudes. The fundamental linkage between cyclones and precipitation extremes may thus provide guidance to forecasters involved in flood prediction, but it is unlikely that forecasting rules based on simple cyclone properties can be established.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3