Author:
Wilkinson Cassandra M.,Burrell Jennifer I.,Kuziek Jonathan W. P.,Thirunavukkarasu Sibi,Buck Brian H.,Mathewson Kyle E.
Abstract
Abstract
In this study, we demonstrated the use of low-cost portable electroencephalography (EEG) as a method for prehospital stroke diagnosis. We used a portable EEG system to record data from 25 participants, 16 had acute ischemic stroke events, and compared the results to age-matched controls that included stroke mimics. Delta/alpha ratio (DAR), (delta + theta)/(alpha + beta) ratio (DBATR) and pairwise-derived Brain Symmetry Index (pdBSI) were investigated, as well as head movement using the on-board accelerometer and gyroscope. We then used machine learning to distinguish between different subgroups. DAR and DBATR increased in ischemic stroke patients with increasing stroke severity (p = 0.0021, partial η2 = 0.293; p = 0.01, partial η2 = 0.234). Also, pdBSI decreased in low frequencies and increased in high frequencies in patients who had a stroke (p = 0.036, partial η2 = 0.177). Using classification trees, we were able to distinguish moderate to severe stroke patients and from minor stroke and controls, with a 63% sensitivity, 86% specificity and accuracy of 76%. There are significant differences in DAR, DBATR, and pdBSI between patients with ischemic stroke when compared to controls, and these effects scale with severity. We have shown the utility of a low-cost portable EEG system to aid in patient triage and diagnosis as an early detection tool.
Funder
Alberta Innovates Health Solutions Collaborative Research and Innovations Opportunities
Partnership for Research and Innovation in the Health System Grants
Natural Sciences and Engineering Research Council of Canada
Publisher
Springer Science and Business Media LLC
Cited by
60 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献