Non-invasive sensor technology for prehospital stroke diagnosis: Current status and future directions

Author:

Walsh Kyle B12ORCID

Affiliation:

1. Department of Emergency Medicine, University of Cincinnati, Cincinnati, OH, USA

2. University of Cincinnati Gardner Neuroscience Institute, Cincinnati, OH, USA

Abstract

Background The diagnosis of stroke in the prehospital environment is the subject of intense interest and research. There are a number of non-invasive external brain monitoring devices in development that utilize various technologies to function as sensors for stroke and other neurological conditions. Future increased use of one or more of these devices could result in substantial changes in the current processes for stroke diagnosis and treatment, including transportation of stroke patients by emergency medical services. Aims The present review will summarize information about 10 stroke sensor devices currently in development, utilizing various forms of technology, and all of which are external, non-invasive brain monitoring devices. Summary of review Ten devices are discussed including the technology utilized, the indications for use (stroke and, when relevant, other neurological conditions), the environment(s) indicated for use (with a focus on the prehospital setting), a description of the physical structure of each instrument, and, when available, findings that have been published in peer-reviewed journals or otherwise reported. The review is organized based on the technology utilized by each device, and seven distinct forms were identified: accelerometers, electroencephalography (EEG), microwaves, near-infrared, radiofrequency, transcranial doppler ultrasound, and volumetric impedance phase shift spectroscopy. Conclusions Non-invasive external brain monitoring devices are in various stages of development and have promise as stroke sensors in the prehospital setting. Some of the potential applications include to differentiate stroke from non-stroke, ischemic from hemorrhage stroke, and large vessel occlusion (LVO) from non-LVO ischemic stroke. Successful stroke diagnosis prior to hospital arrival could transform the current diagnostic and treatment paradigm for this disease.

Publisher

SAGE Publications

Subject

Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3