Isolation and characterization of bacterial cellulose produced from soybean whey and soybean hydrolyzate

Author:

Liu XinORCID,Cao Liang,Wang Shenao,Huang Li,Zhang Yu,Tian Miaoyi,Li Xuejiao,Zhang Jinyou

Abstract

AbstractSoybean whey and soybean hydrolyzate can be used for the biotechnological production of high-value products. Herein, we isolate soybean whey (SW)-and soybean hydrolyzate (SH)-derived bacterial cellulose (BC, produced by kombucha) and characterize it by a range of instrumental techniques to reveal differences in micromorphology, crystallinity, and themal behavior. Studies have shown that the amounts of wet state BC produced from HS, SW and SH was 181 g/L, 47 g/L and 83 g/L, respectively. The instrumental analysis of BC, included SEM, AFM, FT-IR, XRD and TGA. It is shown that the FT-IR spectra of BC have a similar character, but we found differences in the micromorphology,crystallinity and thermal temperature of BC. The minimum average widths of the fibers produced from SH medium was 100 ± 29 nm. The CrI values of BC produced from SH medium was 61.8%. The maximum thermal degradation rate temperature of BC produced from SW medium was 355.73 °C. The combined results demonstrate that soybean industrial waste can be used as a cost-effective raw material for BC production.

Funder

the Key Research and Development (R & D) projects in Heilongjiang Province, China

Natural Science Foundation of Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3