Affiliation:
1. Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
Abstract
Bacterial cellulose (BC) is a broadly utilized natural nanofiber produced by microbial fermentation, but its high-cost and low-yield production and limited function still hinder its application. Here, we used the spraying-assisted biosynthesis method to introduce biomass nanofibers along with the nutrient media to the fermenting BC. Biomass nanofibers could be cellulose, chitosan, and others. They entangled with BC nanofibers via intermolecular interactions, including hydrogen binding and electrostatic adsorption, to form uniform BC composites. The BC composites achieved an enhanced yield of ~140 wt% compared with pure BC and displayed similar excellent mechanical properties (Young’s moduli = 0.9–1.4 MPa for wet films and =~6500 MPa for dried films). BC composites also had similar high crystallinity and thermal stability to pure BC. The functional groups of biomasses endowed BC composite additional functions such as antibacterial and dye-adsorption capabilities. Moreover, a high yield and functionalization could be realized simultaneously by feeding functional cellulose nanofibers. This method provides a facile way to produce BC composites with low cost, high yield, and multiple functions.
Funder
National Natural Science Foundation of China