Author:
Li Heng,Jin Huanhuan,Li Ranran,Hua Junpeng,Zhang Zhen,Li Ruixin
Abstract
AbstractMagnetic core–shell Fe3O4@SiO2 nanoparticles were synthesized by sol–gel method. Based on the characterization and experimental results, the adsorbent was found to have an average particle size of approximately 120 nm, a pore size range of 2–5 nm and superparamagnetic properties. It exhibited electrostatic and hydrogen bonding interactions during adsorption of methyl orange (MO). The adsorption of MO on the magnetic Fe3O4@SiO2 nanoparticles exhibited pseudo-second-order kinetics, the adsorption process is a spontaneous endothermic adsorption process, which conforms to the Langmuir adsorption isotherm model. he maximum amount of MO was adsorbed at pH = 2, T = 45 °C and t = 30 min, and the highest adsorption capacity was 182.503 mg/g; The unit adsorption capacity of the Fe3O4@SiO2 nanoparticles still reached 83% of the original capacity after 5 cycles, so the material was reusable and met the requirements of environmental protection. This study reveals the great potential of magnetic mesoporous nanoparticles for removal of dyes from wastewater.
Publisher
Springer Science and Business Media LLC
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献