Enhanced photonics devices based on low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si8N)

Author:

Ng Doris K. T.,Gao Hongwei,Xing Peng,Chen George F. R.,Chia Xavier X.,Cao Yanmei,Ong Kenny Y. K.,Tan Dawn T. H.

Abstract

AbstractUltra-silicon-rich nitride with refractive indices ~ 3 possesses high nonlinear refractive index—100× higher than stoichiometric silicon nitride and presents absence of two-photon absorption, making it attractive to be used in nonlinear integrated optics at telecommunications wavelengths. Despite its excellent nonlinear properties, ultra-silicon-rich nitride photonics devices reported so far still have fairly low quality factors of $$\sim 6\times {10}^{4}$$ 6 × 10 4 , which could be mainly attributed by the material absorption bonds. Here, we report low temperature plasma-deposited dichlorosilane-based ultra-silicon-rich nitride (Si8N) with lower material absorption bonds, and ~ 2.5× higher quality factors compared to ultra-silicon-rich nitride conventionally prepared with silane-based chemistry. This material is found to be highly rich in silicon with refractive indices of ~ 3.12 at telecommunications wavelengths and atomic concentration ratio Si:N of ~ 8:1. The material morphology, surface roughness and binding energies are also investigated. Optically, the material absorption bonds are quantified and show an overall reduction. Ring resonators fabricated exhibit improved intrinsic quality factors $$\sim 1.5\times {10}^{5}$$ 1.5 × 10 5 , ~ 2.5× higher compared to conventional silane-based ultra-silicon-rich nitride films. This enhanced quality factor from plasma-deposited dichlorosilane-based ultra-silicon-rich nitride signifies better photonics device performance using these films. A pathway has been opened up for further improved device performance of ultra-silicon-rich nitride photonics devices at material level tailored by choice of different chemistries.

Funder

National Research Foundation Singapore

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3