Remaining useful lifetime estimation for discrete power electronic devices using physics-informed neural network

Author:

Lu Zhonghai,Guo Chao,Liu Mingrui,Shi Rui

Abstract

AbstractEstimation of Remaining Useful Lifetime (RUL) of discrete power electronics is important to enable predictive maintenance and ensure system safety. Conventional data-driven approaches using neural networks have been applied to address this challenge. However, due to ignoring the physical properties of the target RUL function, neural networks can result in unreasonable RUL estimates such as going upwards and wrong endings. In the paper, we apply the fundamental principle of Physics-Informed Neural Network (PINN) to enhance Recurrent Neural Network (RNN) based RUL estimation methods. Through formulating proper constraints into the loss function of neural networks, we demonstrate in our experiments with the NASA IGBT dataset that PINN can make the neural networks trained more realistically and thus achieve performance improvements in estimation error and coefficient of determination. Compared to the baseline vanilla RNN, our physics-informed RNN can improve Mean Squared Error (MSE) of out-of-sample estimation on average by 24.7% in training and by 51.3% in testing; Compared to the baseline Long Short Term Memory (LSTM, a variant of RNN), our physics-informed LSTM can improve MSE of out-of-sample estimation on average by 15.3% in training and 13.9% in testing.

Funder

VINNOVA

Vetenskapsrådet

Royal Institute of Technology

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Interpretable and efficient RUL prediction of turbofan engines using EM-enhanced Bi-LSTM with TCN and attention mechanism;Engineering Research Express;2024-07-10

2. Physics-Informed Machine Learning for Robust Remaining Useful Life estimation of Power MOSFETs;2024 IEEE International Conference on Prognostics and Health Management (ICPHM);2024-06-17

3. Health Condition Estimation for Discrete Power Electronic Devices under Package Failure;2024 IEEE International Conference on Prognostics and Health Management (ICPHM);2024-06-17

4. A Comprehensive Study of Machine Learning Algorithms for GPU based Real-time Monitoring and Lifetime Prediction of IGBTs;2024 IEEE Applied Power Electronics Conference and Exposition (APEC);2024-02-25

5. Toward Physics-Informed Machine-Learning-Based Predictive Maintenance for Power Converters—A Review;IEEE Transactions on Power Electronics;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3