Abstract
The insulated gate bipolar transistor (IGBT) is a crucial component of power converters (PCVs) and is commonly used in several PCVs topologies. On the other hand, the investigation and the study of the IGBT component show several changes within its behavior and lifetime, while this component is highly influenced by the operating conditions. Indeed, the monitoring of this component is necessary to minimize unexpected downtime of the wind energy system (WES). However, an accurate prediction of IGBTs remaining useful life (RUL) is the key enabler for life-time-optimized operation. Consequently, this work proposes a new prognostic approach for online IGBTs monitoring that adopts the time-domain analysis to extract useful information that is used as an input in the generation of the health indicator. Moreover, this approach is based on combining both of principal component analysis (PCA) technique and the feedforward neural network (FFNN) technique. PCA is used to reduce features extracted from IGBTs and the FFNN is implemented to achieve online regression of the trend parameter obtained from the PCA technique. To investigate and evaluate the performance of our idea we used the NASA Ames Laboratory Prognostics Center of Excellence IGBTs accelerated aging database. Finally, the achieved results clearly show the strength of the new trend parameter for IGBTs RUL prediction. The most notable strong correlation within the proposed approach is in relation to accuracy value, with an acceptable average accuracy rate of 60.4%.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献