Author:
Kim Shin,Park Jee Young,Lee Hye Won,Bae Sung Uk,Kim Kyeong Eui,Byun Sang Jun,Seo Incheol
Abstract
AbstractThe expression profiles of conventional reference genes (RGs), including ACTB and GAPDH, used in quantitative real-time PCR (qPCR), vary depending on tissue types and environmental conditions. We searched for suitable RGs for qPCR to determine the response to radiotherapy in colorectal cancer (CRC) cell lines, organoids, and patient-derived tissues. Ten CRC cell lines (Caco-2, COLO 205, DLD-1, HCT116, HCT-15, HT-29, RKO, SW1116, SW480, and SW620) and organoids were selected and irradiated with 2, 10 or 21 grays (Gy) based on the previous related studies conducted over the last decade. The expression stability of 14 housekeeping genes (HKGs; ACTB, B2M, G6PD, GAPDH, GUSB, HMBS, HPRT1, IPO8, PGK1, PPIA, TBP, TFRC, UBC, and YWHAZ) after irradiation was evaluated using RefFinder using raw quantification cycle (Cq) values obtained from samples before and after irradiation. The expression stability of HKGs were also evaluated for paired fresh frozen tissues or formalin-fixed, paraffin-embedded samples obtained from CRC patients before and after chemoradiotherapy. The expression of YWHAZ and TBP encoding 14-3-3-zeta protein and TATA-binding protein were more stable than the other 12 HKGs in CRC cell lines, organoids, and patient-derived tissues after irradiation. The findings suggest that YWHAZ and TBP are potential RG candidates for normalizing qPCR results in CRC radiotherapy experiments.
Funder
National Research Foundation of Korea
Publisher
Springer Science and Business Media LLC