Abstract
AbstractMiniature fluorescence microscopes are becoming an increasingly established tool to investigate neural circuits in freely moving animals. In this work we present a lightweight one-photon microscope capable of imaging at different focal depths. The focal plane can be changed dynamically by modulating the pulse width of the control signal to a variable focus liquid lens, which is synchronized to the image sensor to enable changing focal plane between frames. The system was tested by imaging GCaMP7f expressing neurons in the mouse medial prefrontal cortex (mPFC) in vivo during open field test. Results showed that with the proposed design it is possible to image neurons across an axial scan of ~ 60 μm, resulting in a ~ 40% increase of total neurons imaged compared to single plane imaging.
Funder
U.S. Department of Health & Human Services | NIH | National Institute on Drug Abuse
U.S. Department of Health & Human Services | National Institutes of Health
National Institutes of Health
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献