An Improved Free Energy Perturbation FEP+ Sampling Protocol for Flexible Ligand-Binding Domains

Author:

Fratev Filip,Sirimulla SumanORCID

Abstract

AbstractRecent improvements to the free energy perturbation (FEP) calculations, especially FEP+ , established their utility for pharmaceutical lead optimization. Herein, we propose a modified version of the FEP/REST (i.e., replica exchange with solute tempering) sampling protocol, based on detail studies on several targets by probing a large number of perturbations with different sampling schemes. Improved FEP+ binding affinity predictions for regular flexible-loop motions and considerable structural changes can be obtained by extending the prior to REST (pre-REST) sampling time from 0.24 ns/λ to 5 ns/λ and 2 × 10 ns/λ, respectively. With this new protocol, much more precise ∆∆G values of the individual perturbations, including the sign of the transformations and decreased error were obtained. We extended the REST simulations from 5 ns to 8 ns to achieve reasonable free energy convergence. Implementing REST to the entire ligand as opposed to solely the perturbed region, and also some important flexible protein residues (pREST region) in the ligand binding domain (LBD) has considerably improved the FEP+ results in most of the studied cases. Preliminary molecular dynamics (MD) runs were useful for establishing the correct binding mode of the compounds and thus precise alignment for FEP+ . Our improved protocol may further increase the FEP+ accuracy.

Funder

University of Texas at El Paso Faculty startup fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Free Energy Estimation for Drug Discovery: Background and Perspectives;Applied Computer-Aided Drug Design: Models and Methods;2023-12-07

2. Accelerating Alchemical Free Energy Prediction Using a Multistate Method: Application to Multiple Kinases;Journal of Chemical Information and Modeling;2023-11-10

3. Current strategic trends in drug discovery: the present as prologue;Expert Opinion on Drug Discovery;2023-11-07

4. FEP Protocol Builder: Optimization of Free Energy Perturbation Protocols Using Active Learning;Journal of Chemical Information and Modeling;2023-08-18

5. Assessing the performance of docking, FEP, and MM/GBSA methods on a series of KLK6 inhibitors;Journal of Computer-Aided Molecular Design;2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3