Author:
Montero Jordan,Clemente Francesco,Cipriani Christian
Abstract
AbstractLimb amputation not only reduces the motor abilities of an individual, but also destroys afferent channels that convey essential sensory information to the brain. Significant efforts have been made in the area of upper limb prosthetics to restore sensory feedback, through the stimulation of residual sensory elements. Most of the past research focused on the replacement of tactile functions. On the other hand, the difficulties in eliciting proprioceptive sensations using either haptic or (neural) electrical stimulation, has limited researchers to rely on sensory substitution. Here we propose the myokinetic stimulation interface, that aims at restoring natural proprioceptive sensations by exploiting the so-called tendon illusion, elicited through the vibration of magnets implanted inside residual muscles. We present a prototype which exploits 12 electromagnetic coils to vibrate up to four magnets implanted in a forearm mockup. The results demonstrated that it is possible to generate highly directional and frequency-selective vibrations. The system proved capable of activating a single magnet, out of many. Hence, this interface constitutes a promising approach to restore naturally perceived proprioception after an amputation. Indeed, by implanting several magnets in independent muscles, it would be possible to restore proprioceptive sensations perceived as coming from single digits.
Funder
European Research Council
Publisher
Springer Science and Business Media LLC
Reference47 articles.
1. Bowker, J. H. & Michael, J. W. Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles 175–198 (Mosby Inc., 1992).
2. Childress, D. S. Closed-loop control in prosthetic systems: Historical perspective. Ann. Biomed. Eng. 8, 293–303 (1980).
3. Clemente, F., D’Alonzo, M., Controzzi, M., Edin, B. B. & Cipriani, C. Non-invasive, temporally discrete feedback of object contact and release improves grasp control of closed-loop myoelectric transradial prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 1314–1322 (2015).
4. Schiefer, M., Tan, D., Sidek, S. M. & Tyler, D. J. Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis. J. Neural Eng. 13, 016001 (2016).
5. Kandel, E. R., Schwartz, J. H., Jessell, T. M., Siegelbaum, S. A. & Hudspeth, A. J. Principles of Neural Science 5th edn. (McGraw-Hill, 2013).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献