Generating Frequency Selective Vibrations in Remote Moving Magnets

Author:

Masiero Federico12ORCID,La Frazia Eliana12ORCID,Ianniciello Valerio12ORCID,Cipriani Christian12ORCID

Affiliation:

1. The BioRobotics Institute Scuola Superiore Sant’Anna Pisa 56127 Italy

2. Department of Excellence in Robotics and AI Scuola Superiore Sant’Anna 56127 Pisa Italy

Abstract

Extensive efforts in providing upper limb amputees with sensory feedback have primarily focused on the restoration of tactile capabilities, while challenges in evoking proprioceptive sensations have been poorly addressed. Previously, an human–machine interface (HMI) was proposed based on permanent magnets implanted in residual muscles of an amputee, namely the myokinetic interface, to control robotic limb prostheses. Besides control, implanted magnets offer an unprecedent opportunity to trigger musculotendon proprioceptors via untethered selective vibrations. Herein, the challenge of tracking multiple moving magnets is addressed (e.g., following muscle contractions) while being vibrated by controlled magnetic fields produced by external coils. Results demonstrate the viability of a real‐time (RT) system capable of simultaneously tracking and vibrating multiple moving magnets within a three‐dimensional workspace. Highly selective torsional vibrations in the frequency span eliciting movement illusions (70, 80, and 90 Hz) are achieved on two moving magnets, with efficiencies above 0.82 (over 80% of spectral power at the desired frequency). Tracking accuracy and precision remain robust to the coil magnetic field, with position median errors below 1.2 mm and median displacement errors below 0.95 mm. This study represents a crucial step towards the development of a bench system to study proprioception in humans.

Funder

Scuola Superiore Sant'Anna

European Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3