Abstract
Abstract
The photoluminescence quantum yield (PLQY) is an important measure of luminescent materials. Referring to the number of emitted photons per absorbed photons, it is an essential parameter that allows for primary classification of materials and further is a quantity that is of utmost importance for many detailed analyses of luminescent systems and processes. Determining the PLQY has been discussed in literature for many years and various methods are known. Absolute values can be measured directly using an appropriate setup. As this relies on the correct evaluation of photon-counts, it is a very sensitive method. Hence, systematic errors that can occur are discussed widely. However, of course those measurements also contain random uncertainties, which remain mainly unconsidered. The careful evaluation of both systematic and statistical errors of the PLQY is the only way to gain confidence in its absolute value. Here, we propose a way of evaluating the statistical uncertainty in absolute PLQY measurements. This relies on the combination of multiple measurements and the subsequent calculus of the weighted mean. The statistical uncertainty is then obtained as the standard deviation of the mean. This method not only quantifies the impact of statistical influences on the measurements, but also allows simple analysis of time-dependent systematic errors during the measurement and the identification of outliers.
Publisher
Springer Science and Business Media LLC
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献