One‐Step Aerosol Synthesis of Thiocyanate Passivated Hybrid Perovskite Microcrystals: Impact of (Pseudo‐)Halide Additives on Crystallization and Access to a Novel Binary Model

Author:

Bahnmüller Ulrich J.1ORCID,Krysiak Yaşar1ORCID,Seewald Tobias2ORCID,Yalçinkaya Yenal3,Pluta Denis4,Schmidt‐Mende Lukas2ORCID,Weber Stefan A. L.35ORCID,Polarz Sebastian1ORCID

Affiliation:

1. Institute of Inorganic Chemistry Leibniz University Hannover Callinstrasse 9 30167 Hannover Germany

2. Department of Physics University of Konstanz Universitätsstrasse 10 78457 Konstanz Germany

3. Max‐Planck‐Institute for Polymeric Research Ackermannweg 10 55128 Mainz Germany

4. Institute of Physical Chemistry and Electrochemistry Leibniz University Hannover Callinstrasse 3A 30167 Hannover Germany

5. Institute for Photovoltaics University of Stuttgart Pfaffenwaldring 47 70569 Stuttgart Germany

Abstract

AbstractHybrid Perovskite materials have gone through an astonishing development due to their unique optoelectronic behavior, leading to the creation of a wide range of synthetic strategies. As the materials’ surface is found to play a crucial role with respect to the properties, e.g. hydration, stability and carrier mobilities, considerable efforts have been made to optimize the surface through various approaches. Especially the passivation of the perovskite surface attracted a lot of attention in this field, often resulting in more complex, multi‐step synthetic processes. In this study, a simple one‐step aerosol‐assisted synthetic approach is presented to obtain thiocyanate (SCN) passivated single‐crystal MAPbBr3 microcrystals. To elucidate the role of the additive in the crystallization process, mixed (pseudo‐)halide precursors are systematically investigated. The as processed, passivated microcrystals exhibit enhanced stability and charge carrier lifetimes. Additionally, a decrease in surface photovoltage, attributed to the presence of the SCN additive, is observed. Furthermore, the aerosol process is further developed resulting in a novel binary system containing MAPbBr3‐SCN perovskite microcrystals and Au nanostructures. This system serves as a promising model for further investigations into potential interactions between plasmonic and semiconducting materials, with initial results indicating prolonged charge carrier lifetimes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3