Internet of Things enabled open source assisted real-time blood glucose monitoring framework

Author:

K. M Abubeker,R Ramani.,Krishnamoorthy Raja,Gogula Sreenivasulu,S Baskar.,Muthu Sathish,Chellamuthu Girinivasan,Subramaniam Kamalraj

Abstract

AbstractRegular monitoring of blood glucose levels is essential for the management of diabetes and the development of appropriate treatment protocols. The conventional blood glucose (BG) testing have an intrusive technique to prick the finger and it can be uncomfortable when it is a regular practice. Intrusive procedures, such as fingerstick testing has negatively influencing patient adherence. Diabetic patients now have an exceptional improvement in their quality of life with the development of cutting-edge sensors and healthcare technologies. intensive care unit (ICU) and pregnant women also have facing challenges including hyperglycemia and hypoglycemia. The worldwide diabetic rate has incited to develop a wearable and accurate non-invasive blood glucose monitoring system. This research developed an Internet of Things (IoT) - enabled wearable blood glucose monitoring (iGM) system to transform diabetes care and enhance the quality of life. The TTGOT-ESP32 IoT platform with a red and near-infrared (R-NIR) spectral range for blood glucose measurement has integrated into this wearable device. The primary objective of this gadget is to provide optimal comfort for the patients while delivering a smooth monitoring experience. The iGM gadget is 98.82 % accuracy when used after 10 hours of fasting and 98.04 % accuracy after 2 hours of breakfast. The primary objective points of the research were continuous monitoring, decreased risk of infection, and improved quality of life. This research contributes to the evolving field of IoT-based healthcare solutions by streaming real-time glucose values on AWS IoT Core to empower individuals with diabetes to manage their conditions effectively. The iGM Framework has a promising future with the potential to transform diabetes management and healthcare delivery.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3