Characterization of rock joint surface anisotropy considering the contribution ratios of undulations in different directions

Author:

Huang Man,Hong Chenjie,Ma Chengrong,Luo Zhanyou,Du Shigui

Abstract

AbstractAnisotropy in rock joint is strongly dependent on undulating surface morphology. Recent research of the morphology showed the parameter can express the different types of anisotropic characteristics of the joint surface separately. This report aims to analyze the common characteristic of the anisotropic distribution and exhibit the anisotropic variation trend. The joint morphology function consists of two morphology functions of regular plane in orthogonal directions, and the anisotropic variation determined by the contribution ratios of the two morphology. The roughness weight ratio in orthogonal direction of joint surface is used as an index to describe the anisotropic variation behavior, which proposes the anisotropic variation coefficient (AVC). On this basis, it is divided into 5 levels from strong anisotropic to isotropic. According to the assumption of anisotropic arc distribution, the anisotropic analytic function is derived and the agreement between the deduced curves and measured data therefore suggests the possibility of defining the morphology anisotropy through the index AVC. Finally, we verify the characteristic of three natural rock joints, and prove the proposed function can reflect the anisotropic distribution trend. The new index can be used to describe the anisotropic variation behaviour of rock joint surfaces.

Funder

Natural Science Foundation of Zhejiang Province

Key Research and Development Projects of Zhejiang Province

National Natural Science Foundation of China

National Natural Science Foundation of China-Yunnan Joint Fund

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3