A neural network based global traveltime function (GlobeNN)

Author:

Taufik Mohammad H.,Waheed Umair bin,Alkhalifah Tariq A.

Abstract

AbstractGlobal traveltime modeling is an essential component of modern seismological studies with a whole gamut of applications ranging from earthquake source localization to seismic velocity inversion. Emerging acquisition technologies like distributed acoustic sensing (DAS) promise a new era of seismological discovery by allowing a high-density of seismic observations. Conventional traveltime computation algorithms are unable to handle virtually millions of receivers made available by DAS arrays. Therefore, we develop GlobeNN—a neural network based traveltime function that can provide seismic traveltimes obtained from the cached realistic 3-D Earth model. We train a neural network to estimate the traveltime between any two points in the global mantle Earth model by imposing the validity of the eikonal equation through the loss function. The traveltime gradients in the loss function are computed efficiently using automatic differentiation, while the P-wave velocity is obtained from the vertically polarized P-wave velocity of the GLAD-M25 model. The network is trained using a random selection of source and receiver pairs from within the computational domain. Once trained, the neural network produces traveltimes rapidly at the global scale through a single evaluation of the network. As a byproduct of the training process, we obtain a neural network that learns the underlying velocity model and, therefore, can be used as an efficient storage mechanism for the huge 3-D Earth velocity model. These exciting features make our proposed neural network based global traveltime computation method an indispensable tool for the next generation of seismological advances.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3