Seismic velocity changes in the Groningen reservoir associated with distant drilling

Author:

Zhou Wen,Paulssen Hanneke

Abstract

AbstractIn this study, we show that passively recorded data of nearby passing trains by a deep borehole geophone array could be linked to fluctuations of the gas-water contact in the Groningen reservoir in The Netherlands. During a period of 1.5 months, changes of inter-geophone P-wave travel times were detected by deconvolution interferometry of the recorded train signals. P-to-S converted waves, obtained by deconvolution of the horizontal component by the vertical component at individual geophones, showed simultaneous variations. The observed travel-time changes could be related to fluctuations of the gas-water contact in the observation well caused by pressure variations at a well drilling 4.5 km away. The $$\sim$$ 3.5 day delay between drilling in the reservoir and the seismic response yields a hydraulic diffusivity of approximately 5 m$$^2$$ 2 /s and suggests that the pressure front is effectively propagated over such a long distance. Our observations illustrate that downhole geophone arrays can be used to monitor changes in the subsurface if repeating noise sources are available, and that unexpected effects may occur due to drilling.

Funder

ITN CREEP

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3