Feasibility of reservoir monitoring in the Groningen gas field using ghost reflections from seismic interferometry

Author:

Shirmohammadi Faezeh1ORCID,Draganov Deyan1,Veltmeijer Aukje1,Naderloo Milad1,Barnhoorn Auke1

Affiliation:

1. Department of Geoscience and Engineering, Delft University of Technology , 2628 CN Delft , The Netherlands

Abstract

SUMMARY Seismic interferometry (SI) retrieves new seismic responses, for example reflections, between either receivers or sources. When SI is applied to a reflection survey with active sources and receivers at the surface, non-physical (ghost) reflections are retrieved as well. Ghost reflections, retrieved from the correlation of two primary reflections or multiples from two different depth levels, are only sensitive to the properties in the layer that cause them to appear in the result of SI, such as velocity, density and thickness. We aim to use these ghost reflections for monitoring subsurface changes, to address challenges associated with detecting and isolating changes within the target layer in monitoring. We focus on the feasibility of monitoring pore-pressure changes in the Groningen gas field in the Netherlands using ghost reflections. To achieve this, we utilize numerical modelling to simulate scalar reflection data, deploying sources and receivers at the surface. To build up subsurface models for monitoring purposes, we perform an ultrasonic transmission laboratory experiment to measure S-wave velocities at different pore pressures. Applying SI by autocorrelation to the modelled data sets, we retrieve zero-offset ghost reflections. Using a correlation operator, we determine time differences between a baseline survey and monitoring surveys. To enhance the ability to detect small changes, we propose subsampling the ghost reflections before the correlation operator and using only virtual sources with a complete illumination of receivers. We demonstrate that the retrieved time differences between the ghost reflections exhibit variations corresponding to velocity changes inside the reservoir. This highlights the potential of ghost reflections as valuable indicators for monitoring even small changes. We also investigate the effect of the sources and receivers’ geometry and spacing and the number of virtual sources and receivers in retrieving ghost reflections with high interpretability resolution.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3