Multiple serous cavity effusion screening based on smear images using vision transformer

Author:

Wang Chunbao,Wang Xiangyu,Gao Zeyu,Ran Caihong,Li Chen,Ding Caixia

Abstract

AbstractSerous cavity effusion is a prevalent pathological condition encountered in clinical settings. Fluid samples obtained from these effusions are vital for diagnostic and therapeutic purposes. Traditionally, cytological examination of smears is a common method for diagnosing serous cavity effusion, renowned for its convenience. However, this technique presents limitations that can compromise its efficiency and diagnostic accuracy. This study aims to overcome these challenges and introduce an improved method for the precise detection of malignant cells in serous cavity effusions. We have developed a transformer-based classification framework, specifically employing the vision transformer (ViT) model, to fulfill this objective. Our research involved collecting smear images and corresponding cytological reports from 161 patients who underwent serous cavity drainage. We meticulously annotated 4836 patches from these images, identifying regions with and without malignant cells, thus creating a unique dataset for smear image classification. The findings of our study reveal that deep learning models, particularly the ViT model, exhibit remarkable accuracy in classifying patches as malignant or non-malignant. The ViT model achieved an impressive area under the receiver operating characteristic curve (AUROC) of 0.99, surpassing the performance of the convolutional neural network (CNN) model, which recorded an AUROC of 0.86. Additionally, we validated our models using an external cohort of 127 patients. The ViT model sustained its high-level screening performance, achieving an AUROC of 0.98 at the patient level, compared to the CNN model’s AUROC of 0.84. The visualization of our ViT models confirmed their capability to precisely identify regions containing malignant cells in multiple serous cavity effusion smear images. In summary, our study demonstrates the potential of deep learning models, particularly the ViT model, in automating the screening process for serous cavity effusions. These models offer significant assistance to cytologists in enhancing diagnostic accuracy and efficiency. The ViT model stands out for its advanced self-attention mechanism, making it exceptionally suitable for tasks that necessitate detailed analysis of small, sparsely distributed targets like cellular clusters in serous cavity effusions.

Funder

the Natural Science Foundation of Shaanxi Province of China

the Key Research and Development Program of Shaanxi Province

the Innovative Research Group of the National Natural Science Foundation of China

National Natural Science Foundation of China Incubation Project of Shaanxi Provincial Cancer Hospital

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3