Recent Application of Artificial Intelligence in Non-Gynecological Cancer Cytopathology: A Systematic Review

Author:

Thakur NishantORCID,Alam Mohammad Rizwan,Abdul-Ghafar JamshidORCID,Chong YosepORCID

Abstract

State-of-the-art artificial intelligence (AI) has recently gained considerable interest in the healthcare sector and has provided solutions to problems through automated diagnosis. Cytological examination is a crucial step in the initial diagnosis of cancer, although it shows limited diagnostic efficacy. Recently, AI applications in the processing of cytopathological images have shown promising results despite the elementary level of the technology. Here, we performed a systematic review with a quantitative analysis of recent AI applications in non-gynecological (non-GYN) cancer cytology to understand the current technical status. We searched the major online databases, including MEDLINE, Cochrane Library, and EMBASE, for relevant English articles published from January 2010 to January 2021. The searched query terms were: “artificial intelligence”, “image processing”, “deep learning”, “cytopathology”, and “fine-needle aspiration cytology.” Out of 17,000 studies, only 26 studies (26 models) were included in the full-text review, whereas 13 studies were included for quantitative analysis. There were eight classes of AI models treated of according to target organs: thyroid (n = 11, 39%), urinary bladder (n = 6, 21%), lung (n = 4, 14%), breast (n = 2, 7%), pleural effusion (n = 2, 7%), ovary (n = 1, 4%), pancreas (n = 1, 4%), and prostate (n = 1, 4). Most of the studies focused on classification and segmentation tasks. Although most of the studies showed impressive results, the sizes of the training and validation datasets were limited. Overall, AI is also promising for non-GYN cancer cytopathology analysis, such as pathology or gynecological cytology. However, the lack of well-annotated, large-scale datasets with Z-stacking and external cross-validation was the major limitation found across all studies. Future studies with larger datasets with high-quality annotations and external validation are required.

Funder

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government

Publisher

MDPI AG

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3