Author:
Akagi Yuka,Mori Nobuhito,Kawamura Teruhisa,Takayama Yuzo,Kida Yasuyuki S.
Abstract
AbstractRaman scattering represents the distribution and abundance of intracellular molecules, including proteins and lipids, facilitating distinction between cellular states non-invasively and without staining. However, the scattered light obtained from cells is faint and cells have complex structures, making it difficult to obtain a Raman spectrum covering the entire cell in a short time using conventional methods. This also prevents efficient label-free cell classification. In the present study, we developed the Paint Raman Express Spectroscopy System, which uses two fast-rotating galvano mirrors to obtain spectra from a wide area of a cell. By using this system and applying machine learning, we were able to acquire broad spectra of a variety of human and mouse cell types, including pluripotent stem cells and confirmed that each cell type can be classified with high accuracy. Moreover, we classified different activation states of human T cells, despite their similar morphology. This system could be used for rapid and low-cost drug evaluation and quality management for drug screening in cell-based assays.
Funder
Grant-in-Aid for Research Activity Start-up
Publisher
Springer Science and Business Media LLC
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献