Functional mapping of the lower urinary tract by epidural electrical stimulation of the spinal cord in decerebrated cat model

Author:

Sysoev Yuriy,Bazhenova Elena,Shkorbatova Polina,Kovalev Gleb,Labetov Ivan,Merkulyeva Natalia,Shkarupa Dmitry,Musienko Pavel

Abstract

AbstractSeveral neurologic diseases including spinal cord injury, Parkinson’s disease or multiple sclerosis are accompanied by disturbances of the lower urinary tract functions. Clinical data indicates that chronic spinal cord stimulation can improve not only motor function but also ability to store urine and control micturition. Decoding the spinal mechanisms that regulate the functioning of detrusor (Detr) and external urethral sphincter (EUS) muscles is essential for effective neuromodulation therapy in patients with disturbances of micturition. In the present work we performed a mapping of Detr and EUS activity by applying epidural electrical stimulation (EES) at different levels of the spinal cord in decerebrated cat model. The study was performed in 5 adult male cats, evoked potentials were generated by EES aiming to recruit various spinal pathways responsible for LUT and hindlimbs control. Recruitment of Detr occurred mainly with stimulation of the lower thoracic and upper lumbar spinal cord (T13-L1 spinal segments). Responses in the EUS, in general, occurred with stimulation of all the studied sites of the spinal cord, however, a pronounced specificity was noted for the lower lumbar/upper sacral sections (L7-S1 spinal segments). These features were confirmed by comparing the normalized values of the slope angles used to approximate the recruitment curve data by the linear regression method. Thus, these findings are in accordance with our previous data obtained in rats and could be used for development of novel site-specific neuromodulation therapeutic approaches.

Funder

St. Petersburg State University

Russian Science Foundation grant

State Program GP-47 “Scientific and Technological Development of the Russian Federation”

Ministry of Science and Higher Education of the Russian Federation

Grant of President of Russian Federation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3