Numerical study on a rotational hydraulic damper with variable damping coefficient

Author:

Zhao Huiyong,Wang Baohua,Chen Genfu

Abstract

AbstractThe rotational hydraulic damper has advantages in the design and control of rotational machines. This paper presents a novel hydraulic rotational damper with the characteristic of adjusting the damping coefficient. It is composed of a shell, a gap, a rotor shaft, sliding vanes, a valve, and a motor, just like a combination of a sliding pump system and a valve driven by a motor. A new cam ring slot designed to guide the radial motion of sliding vanes could reduce friction resistance force, which will also benefit the design of the sliding pump. The damping coefficient model of this damper is established based on dynamic analysis. Series of numerical simulations validate the impact of factors on the damping coefficient. Frictional resistances have little influence on the damping coefficient during most conditions. The total coefficient is positively correlative with the angular velocity and the valve angle. Therefore, changing the valve angle according to the rotor shaft’s angular speed could adjust the damping coefficient.

Funder

Open Foundation of Hubei Key Laboratory of Automotive Power Train and Electronic Control

Startup Foundation for Doctors of Hubei University of Automotive Technology

Hubei Province Collaborative Innovation Centers for Automotive Part and Assembly Technology, Automobile Conservation Technology

National Natural Foundation of China

Science and Technology Project of Hubei Province

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3